

MORBIDITY AND MORTALITY WEEKLY REPORT

April 10, 1987 / Vol. 36 / No. 13

193 Update on Influenza Activity Worldwide and World Health Organization and United States Recommendations for Influenza Vaccine Composition for the 1987-1988 Season
195 Sex-, Age-, and Region-Specific Prevalence of Sedentary Lifestyle in Selected States in 1985 - The Behavioral Risk Factor Surveillance System
204 Update: Salmonella enteritidis Infections in the Northeastern United States
205 The Prevalence of Cancer - Connecticut, January 1, 1982

Current Trends

Update on Influenza Activity Worldwide and World Health Organization and United States Recommendations for Influenza Vaccine Composition for the 1987-1988 Season

During February or March each year, the World Health Organization (WHO) summarizes availahle data on recently isolated influenza viruses arnund the unorld and issues recemmend tions for vaccine composition. The WHO reports $(1,2)$ and the U.S. recommendations for composition of the 1987-1988 influenza vaccine are summarized below.

Influenza- Worldwide

From September 1986 through February 1987, influenza A(H1N1) viruses predominated and, in most countries, were the only type of influenza virus isolated. As in previous epidemics since 1977, influenza $A(H 1 N 1)$ outbreaks occurred mainly among children and young adults. Few influenza $A(H 3 N 2)$ or influenza B viruses have been isolated.

Influenza A(H 1N 1). In the Americas, localized outbreaks occurred in the United States in October and November 1986. Influenza activity increased markedly in the United States in December, and, by mid-February, the virus had been isolated from patients in 49 states and the District of Columbia. Canada also reported activity from October through January. In Jamaica, outbreaks were serologically confirmed in both October and November. Brazil reported a single case in October.

In Asia, widespread outbreak activity was reported in the Democratic People's Republic of Korea during October and November and in Japan during November and December. China reported sporadically occurring cases from November through January, and Hong Kong reported them in December. In the Middle East, influenza $A(H 1 N 1)$ virus was isolated during outbreaks in the Islamic Republic of Iran in November and in Israel during November and December.

In Europe, localized outbreaks occurred in the United Kingdom in September and October, with continued activity through January. In both the German Democratic Republic and the USSR, outbreak activity was widespread during November and declined during December. Czechoslovakia, Hungary, Poland, and Yugoslavia also reported widespread influenza activity in December. Elsewhere in Europe (Denmark, the Federal Republic of Germany, Finland, France, Italy, the Netherlands, Norway, Romania, Spain, Sweden, and Switzerland), there was activity between December and February.

Influenza A(H3N2). Influenza $A(H 3 N 2)$ virus was isolated along with influenza $A(H 1 N 1)$ during an outbreak in the Democratic People's Republic of Korea. The virus was also isolated during an outbreak in Ecuador in November. Otherwise, A(H3N2) was detected only in sporadically occurring cases in Canada, China, Italy, Romania, Tunisia, the United States, and the USSR.

Influenza B. Outbreaks of influenza B were reported in Panama in September and October and in Singapore in December. Sporadically occurring cases were also detected in Canada, Chile, the Federal Republic of Germany, Hong Kong, India, Senegal, Singapore, Spain, Sweden, Taiwan, the United Kingdom, the United States, and the USSR.
Antigenic Analysis of Recent Isolates
Influenza $\mathbf{A}(\mathrm{H} 1 \mathrm{~N} 1)$ viruses collected from many parts of the world during the 1986-1987 season have been antigenically characterized. Virtually all of them were indistinguishable from the A/Taiwan/1/86-like strains isolated in Asia early in 1986 (3). Influenza B viruses, which were isolated infrequently during the 1986-1987 season, were antigenically heterogeneous. However, all were closely related to B/Ann Arbor/1/86 (4).

The influenza $A(H 3 N 2)$ viruses isolated from outbreaks in all parts of the world during the 1985-1986 season were antigenically heterogeneous. About two-thirds differed from A/Mississippi/1/85 (H3N2), which was included in the 1986-1987 U.S. trivalent influenza vaccine. More than 25% of the $\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2)$ isolates characterized in the United States during the 1985-1986 season were antigenically similar to the A(H3N2) variant, A/Stockholm/8/85. Sera from recipients of the 1986-1987 trivalent vaccine were tested for antibody against both A/Mississippi/1/85 and A/Stockholm/8/85 antigens by hemagglutination inhibition (Table 1). For both young adults and nursing home residents who had received the trivalent vaccine, the geometric mean titers were nearly threefold lower to the A/Stockholm/8/85 virus than to the homologous $\mathrm{A} / \mathrm{Mississippi} / 1 / 85$ virus. Furthermore, for the nursing home residents, 38% of the post-vaccination sera had titers that were $\geqslant 40$ to $A / S t o c k h o l m / 8 / 85$, whereas 69% had titers $\geqslant 40$ to A/Mississippi/1/85.

Very few $A(H 3 N 2)$ viruses have been isolated during the 1986-1987 season; however, several appear similar to the A/Stockholm/8/85 variant. The 1986-1987 variant, A/Leningrad/360/86, an egg isolate suitable for vaccine production, appears closely related to A/Stockholm/8/85 (Table 2). These reference strains are poorly inhibited by ferret serum to the $A / B a n g k o k / 1 / 79$ strain, used ${ }^{2}$ in influenza vaccines during the period 1980-1985. They are also inhibited at significantly reduced titers (compared to the homologous titer) by ferret

TABLE 1. Hemagglutination-inhibition antibody response to influenza $\mathbf{A}(\mathrm{H} 3 \mathrm{~N} 2)$ viruses in recipients of trivalent 1986-1987 influenza vaccine*

Population	Test antigen	Pre-vaccine						Post-vaccine					
		Cumulative \% with titer \geqslant					$(\mathrm{GMT})^{\dagger}$	Cumulative \% with titer \geqslant					$(\mathrm{GMT})^{\dagger}$
		10	20	40	80	160		10	20	40	80	160	
Young adults	A/Mississippi/ 1/85	48	26	12	2		(9)	98	98	93	71	45	(99)
	A/Stockholm/ 8/85	7	2	2			(5)	83	79	57	38	19	(36)
Nursing home residents	A/Mississippi/ 1/85	71	62	40	20	13	(21)	89	84	69	42	24	(44)
	$\begin{aligned} & \text { A/Stockholm/ } \\ & 8 / 85 \end{aligned}$	33	31	22	9		(10)	53	49	38	18	4	(15)

-Trivalent split vaccine containing $15 \mu \mathrm{~g}$ each of $\mathrm{A} /$ Mississippi/1/85, $\mathrm{A} /$ Chile/1/83, and $\mathrm{B} / \mathrm{Ann}$ Arbor $/ 1 / 86$.
${ }^{\dagger}$ Geometric mean titer.
TABLE 2. Hemagglutination-inhibition reactions of influenza $A(H 3 N 2)$ viruses

	Ferret antisera			
Reference antigen	A/Bangkok/1/79	A/Mississippi/1/85	A/Stockholm/8/85	A/Leningrad/360/86
A/Bangkok $/ 1 / 79$	$\mathbf{1 . 2 8 0}$	640	320	80
A/Mississippi/1/85	320	1.280	320	160
A/Stockholm $/ 8 / 85$	40	320	640	160
A/Leningrad $/ 360 / 86$	40	320	640	160

antiserum to $A /$ Mississippi/1/85. However, ferret antisera to both A/Stockholm/8/85 and A/Leningrad/360/86 inhibit A/Mississippi/1/85.

Recommendations for the Composition of Influenza Virus Vaccines

Because of these antigenic variations and the continued isolation of viruses resembling A/Stockholm/8/85, WHO recommends that influenza vaccines for use during the 1986-1987 season contain a representative of this variant in place of $A / M i s s i s s i p p i / 1 / 85$.

The above findings were discussed at a WHO meeting in February. The Public Health Service Vaccine Advisory Panel (PHSVAP) met during the same period to review the data regarding antigenic variations of virus isolates. Consistent with WHO recommendations, the PHS recommends that influenza vaccines for use in the 1987-1988 season be trivalent and contain the following antigens:

A/Taiwan/1/86(H1N1)-like antigen
B/Ann Arbor/1/86-like antigen
A/Leningrad/360/86(H3N2)-like antigen
Recommendations of the Immunization Practices Advisory Committee regarding dosage and schedule of the vaccine will be published in the MMWR later this spring.
Reported by: Influenza Research Center, Baylor College of Medicine, Houston, Texas. FL Ruben, MD, B Heisler, P Fallon, Montefiore Hospital, University of Pittsburgh School of Medicine, Pennsy/vania. National Influenza Centers, Microbiology and Immunology Support Svcs, WHO, Geneva. Div of Virology, Office of Biologics, Food and Drug Administration. WHO Collaborating Center for Influenza, Influenza Br, Div of Viral Diseases, Center for Infectious Diseases, CDC.

References

1. World Health Organization. Recommended composition of influenza virus vaccines for use in the 1987-1988 season. Wkly Epidem Rec 1987;62:54-7.
2. World Health Organization. Recommended composition of influenza vaccine for use in the 1987-1988 season-a supplementary statement. Wkly Epidem Rec 1987;62:90.
3. CDC. Antigenic variation of recent influenza A(H1N1) viruses. MMWR 1986;35:510-2.
4. World Health Organization. Recommended composition of influenza virus vaccines for use in the 1986-1987 season. Wkly Epidem Rec 1986;61:61-4.

Perspectives in Disease Prevention and Health Promotion

Sex-, Age-, and Region-Specific Prevalence of Sedentary Lifestyle in Selected States in 1985 - The Behavioral Risk Factor Surveillance System

The Behavioral Risk Factor Surveillance System (BRFSS) is a telephone survey conducted by state health departments to routinely collect risk factor data from adults (>18 years of age). The following analysis examines sedentary lifestyle data from the 25,221 persons interviewed by the 22 states (including the District of Columbia) participating in the BRFSS during 1985.

Participants were asked to provide details of up to two activities performed during the past month. The prevalence of sedentary lifestyle was estimated by the percentage of persons who reported either no physical activity or physical activity less than three times per week and/or less than 20 minutes per occasion. This criterion level is based on the 1990 objectives for the nation regarding physical fitness and exercise (1) and represents the minimum amount of physical activity likely to confer health benefits.

Table 3 presents the sex-specific prevalence of sedentary lifestyle in the 22 states. The distribution of these prevalences is summarized in the "box-plots" in Figure 1. These plots provide the maximum range, the upper and lower quartiles, and the median (50th percentile) of the distribution of state-specific prevalences for the 22 states.

Figure 1 indicates that the median prevalence of sedentary lifestyle is somewhat higher for women than for men; however, the distribution of prevalence estimates for the two genders overlap considerably. This figure also shows that the variation in prevalence estimates of sedentary lifestyle is somewhat greater for women than for men.

Table 4 presents the age-specific prevalence of sedentary lifestyle for adults in the 22 states. In most instances, the prevalence of sedentary lifestyle for adults increased with increasing age. The distribution of these prevalences is summarized in Figure 2, which also indicates that there is considerable overlap between the three age-specific prevalence distributions of adult sedentary lifestyle in the states.

Figure 3 indicates that the median prevalence of sedentary lifestyle by region is somewhat higher for the southeastern states and lowest in the southwestern and mountain states. FIGURE 1. Box-plot summaries of the sex-specific distribution of sedentary lifestyle prevalences from $\mathbf{2 2}$ states participating in the 1985 Behavioral Risk Factor Surveillance System

TABLE 3. Sex-specific prevalence estimates of sedentary lifestyle, by state - 1985 Behavioral Risk Factor Surveillance System

	Men			Women		
State	No.	$(\%)$	$(95 \%$ Cl			
	No.	$(\%)$	$(95 \%$ Cl*)			
Arizona	480	(48)	$(44-53)$	695	(45)	$(41-49)$
California	597	(50)	$(46-54)$	775	(57)	$(53-60)$
Connecticut	400	(51)	$(46-56)$	583	(55)	$(51-59)$
District of Columbia	283	(51)	$(45-57)$	443	(59)	$(54-63)$
Florida	311	(52)	$(46-58)$	465	(52)	$(47-56)$
Georgia	353	(63)	$(58-69)$	465	(64)	$(60-69)$
Idaho	448	(44)	$(39-48)$	731	(41)	$(37-45)$
Illinois	503	(50)	$(46-55)$	645	(56)	$(52-60)$
Indiana	474	(62)	$(58-66)$	708	(66)	$(63-70)$
Kentucky	325	(65)	$(59-70)$	478	(61)	$(56-65)$
Minnesota	1,026	(56)	$(53-59)$	1,360	(57)	$(54-59)$
Montana	490	(49)	$(44-53)$	693	(43)	$(39-46)$
New York	484	(50)	$(46-55)$	690	(56)	$(52-60)$
North Carolina	641	(54)	$(50-58)$	887	(61)	$(58-64)$
North Dakota	262	(57)	$(51-63)$	366	(55)	$(50-60)$
Ohio	462	(60)	$(55-64)$	694	(61)	$(57-65)$
Rhode Island	542	(63)	$(59-67)$	735	(67)	$(63-70)$
South Carolina	458	(64)	$(59-68)$	758	(66)	$(63-69)$
Tennessee	415	(66)	$(61-71)$	792	(71)	$(68-74)$
Utah	451	(50)	$(45-55)$	711	(46)	$(42-49)$
West Virginia	466	(59)	$(54-64)$	711	(66)	$(63-70)$
Wisconsin	435	(55)	$(50-60)$	530	(55)	$(50-59)$

*Confidence interval.

Northeastern and central states were intermediate in their prevalence of sedentary lifestyle. Again, there is considerable overlap of the region-specific distribution of prevalence estimates for the four regions.

Reported by: T Hughes, Arizona Dept of Health Svcs. F Capell, California Dept of Health Svcs. S Benn, Connecticut State Dept of Health Svcs. R Conn, EdD, District of Columbia Dept of Human Svcs. J Godwin, Florida Dept of Health and Rehabilitative Svcs. JD Smith, Georgia Dept of Human Resources. JV Patterson, Idaho Dept of Health and Welfare. D Patterson, Illinois Dept of Public Health. S Jain, Indiana State Board of Health. K Bramblett, Kentucky Cabinet for Human Resources. N Salem, Minnesota Center for Health Statistics. R Moon, Montana State Dept of Health and Environmental Sciences. H Bzudch, New York State Dept of Health. C Washington, North Carolina Dept of Human Resources. B Lee, North Dakota
FIGURE 2. Box-plot summaries of the age-specific distribution of sedentary lifestyle prevalences from 22 states participating in the 1985 Behavioral Risk Factor Surveillance System

TABLE 4. Age-specific prevalence estimates of sedentary lifestyle, by state - 1985 Behavioral Risk Factor Surveillance System

State	18-34			35-54			$\geqslant 55$		
	No.	(\%)	(95\% CI*)	No.	(\%)	(95\% Cl*)	No.	(\%)	(95\% CI*)
Arizona	463	(44)	(39-48)	334	(46)	(41-52)	378	(49)	(44-55)
California	515	(50)	(45-54)	457	(60)	(55-64)	400	(53)	(48-58)
Connecticut	317	(46)	(41-52)	314	(54)	(48-59)	352	(59)	(53-64)
District of Columbia	276	(47)	(41-53)	206	(56)	(49-63)	244	(66)	(59-72)
Florida	289	(52)	(46-57)	234	(52)	(46-59)	253	(52)	(46-59)
Georgia	309	(55)	(49-61)	287	(67)	(61-72)	222	(73)	(66-79)
Idaho	432	(37)	(32-41)	367	(42)	(37-47)	380	(48)	(43-53)
Illinois	449	(42)	(37-46)	351	(57)	(52-63)	348	(65)	(60-70)
Indiana	415	(57)	(52-62)	368	(65)	(60-70)	398	(72)	(68-77)
Kentucky	259	(53)	(47-60)	257	(65)	(59-71)	287	(68)	(63-74)
Minnesota	1,005	(49)	(46-52)	674	(57)	(54-61)	707	(65)	(61-69)
Montana	479	(42)	(37-46)	352	(50)	(44-55)	352	(45)	(40-51)
New York	414	(47)	(42-52)	374	(53)	(48-58)	386	(61)	(56-66)
North Carolina	535	(55)	(51-60)	507	(56)	(52-61)	485	(62)	(58-67)
North Dakota	235	(47)	(40-53)	178	(63)	(56-71)	215	(60)	(53-67)
Ohio	431	(53)	(48-58)	361	(62)	(57-67)	364	(68)	(63-73)
Rhode Island	465	(57)	(52-61)	397	(65)	(60-70)	415	(75)	(70-79)
South Carolina	433	(58)	(53-63)	409	(73)	(68-77)	374	(70)	(65-74)
Tennessee	400	(66)	(61-71)	387	(65)	(60-69)	420	(77)	(73-81)
Utah	522	(44)	(40-48)	368	(47)	(42-53)	272	(53)	(47-59)
West Virginia	356	(56)	(50-61)	332	(61)	(56-67)	488	(71)	(67-75)
Wisconsin	354	(49)	(44-55)	293	(57)	(51-63)	318	(59)	(54-65)

[^0]State Dept of Health. E Capwell, Ohio Dept of Health. J Cataldo, Rhode Island Dept of Health. FC Wheeler, South Carolina Dept of Health and Environmental Control. J Fortune, Tennessee Dept of Health and Environment. C Chakley, Utah Dept of Health. R Anderson, West Virginia State Dept of Health. DR Murray, Wisconsin Center for Health Statistics. Div of Health Education, Center for Health Promotion and Education, $C D C$.
Editorial Note: Eleven of the 1990 objectives for the nation relate to physical fitness and exercise. Most of these 11 objectives emphasize "appropriate physical activity," which is defined as "exercise which involves large muscle groups in dynamic movement for periods of 20 minutes or longer, three or more days per week, and which is performed at an intensity of 60 percent or greater of an individual's cardiorespiratory capacity." This amount of physical activity is rather strenuous, and evidence indicates that less intensive, yet regular, physical activity may also confer health benefits (2). Therefore, the analysis reported here sought to estimate the prevalence of sedentary lifestyle, i.e., physical activity less than three times per week, less than 20 minutes per occasion, or both, regardless of the intensity of participation.

An average of 55% of the 25,221 persons interviewed by telephone in the 22 states participating in the 1985 BRFSS reported so little physical activity in the past month as to be
(Continued on page 203)

TABLE I. Summary - cases specified notifiable diseases, United States

Disease	13th Week Ending			Cumulative, 13th Week Ending		
	$\begin{gathered} \hline \text { Mar. 29, } \\ 1987 \end{gathered}$	$\begin{aligned} & \text { Apr. } 4 . \\ & 1986 \end{aligned}$	$\begin{gathered} \text { Median } \\ \text { 1982-1986 } \end{gathered}$	$\begin{gathered} \hline \text { Mar. } 29 . \\ 1987 \end{gathered}$	$\begin{gathered} \hline \text { Apr. } 4, \\ 1986 \\ \hline \end{gathered}$	$\begin{gathered} \text { Median } \\ 1982-1986 \end{gathered}$
Acquired Immunodeficiency Syndrome (AIDS)	244	296	N	4,669	2.907	N
Aseptic meningitis	80	74	81	1,083	1,068	1.045
Encephalitis: Primary (arthropod-borne \& unspec) Post-infectious	16	17	21 3	189 9	219 25	222 23
Gonorrhea: Civilian	12.999	18.150	16,313	198,108	207,381	207.381
Military	254	256	503	4.209	4.031	5,615
Hepatitis: Type A	511	445	447	6.121	5,565	5,665
Type B	445	544	492	6,020	6,077	5.999
Non A, Non B	59	69	N	703	812	N
Unspecified	29	79	107	810	1.256	1,261
Legionellosis	9	21	N	154	152	N
Leprosy	4	4	7	52	65	65
Malaria	20	6	13	166	169	166
Measles: Total*	65	441	85	678	1.476	549
Indigenous	58	439	N	581	1,430	N
Imported	7	2	N	97	42	N
Meningococcal infections: Total	59	70	70	947	846	861
Civilian	59	69	69	946	844	850
Mumps Milary	316	105	1	1	2	2
Pertussis	23	61	41	4.412	768	1,055
Rubella (German measles)	7	3	13	43	118	134
Syphilis (Primary \& Secondary): Civilian	511	630	630	8.283	6,454	7.209
Military	2	4	7	51	58	85
Toxic Shock syndrome	8	9	N	74	76	N
Tuberculosis	300	378	479	4,667	4,617	4.868
Tularemia	,	1	1	17	17	23
Typhoid Fever	1	2	10	55	51	81
Typhus fever, tick-borne (RMSF)	1	2	2	10	14	14
Rabies, animal	95	176	143	1.017	1.219	1.219

TABLE II. Notifiable diseases of low frequency, United States

	Cum. 1987		Cum. 1987
Anthrax	-	Leptospirosis	7
Botulism: Foodborne	1	Plague	1
Infant	15	Poliomyelitis, Paralytic	-
Other	${ }^{-}$	Psittacosis	16
Brucellosis (W. Va. 1, Alapka 1)	18	Rabies, human	7
Cholera Congenital rubella syndrome	2	Tetanus	11
Congenital syphilis, ages <1 year Diphtheria	2	Typhus fever, flea-borne (endemic, murine)	5

[^1] imported case within two generations.

TABLE III. Cases of specified notifiable diseases, United States, weeks ending
April 4, 1987 and March 29, 1986 (13th Week)

Reporting Area	AIDS	Aseptic Meningitis	Encephalitis		Gonorrhea (Civilian)		Hepatitis (Viral), by type				Legionellosis	Leprosy
			Primary	Post-infectious			A	B	NA, NB	Unspecified		
	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	1987	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	1987	1987	1987	1987	1987	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$
UNITED STATES	4,669	80	189	9	198,108	207,381	511	445	59	29	9	52
NEW ENGLAND	177	2	8	1	7,229	4,532	14	32	4	3	1	2
Maine	10	-	1	-	223	223	1	2	-	-	-	-
NH	5	1	-	-	116	129	-	3	2	-	-	-
Vt	3		2	-	53	76	2	1	2	-	-	-
Mass	102	-	2	-	2,716	1,914	2	20	1	3	1	2
R I	16	-	2	1	562	445	6	2	1	-	-	-
Conn	41	1	1	-	3.559	1.745	3	4	-	-	-	-
MID ATLANTIC	1,437	-	23	-	32,770	33,708	10	6	1	1	-	-
Upstate $\mathrm{N} Y$	161	-	13	-	4,272	3,905	10	3	1	1	-	-
NY City	882	-	4	-	18,440	19,951	-	3	.	-	-	-
N J	288	-	1	-	3,862	3,788	-	-	-	-	-	-
Pa	106	U	5	-	6,196	6,064	U	U	U	U	U	-
EN CENTRAL	253	8	51	-	22,770	29,045	26	50	6	1	2	1
Ohio	23	2	23	-	5,840	6,995	3	13	1	-	-	1
Ind	23	-	2	-	2,536	3.143	10	19	1	1	-	-
III	137	-	7	-	2,992	7.147	2	5	-	-	-	-
Mich	46	6	17	-	9,269	8,591	11	13	4	-	2	-
Wis	24	-	2	-	2,133	3,169	-	-	-	-	-	-
W N CENTRAL	111	6	11	-	8,284	9,179	19	21	3	3	2	-
Minn	27	3	7	-	1,345	1,320	5	7	1	-	1	-
lowa	5	2	-	-	822	889	1	2	1	-	-	-
Mo	59	-	-	-	4.144	4,420	3	9	1	3	-	-
N Dak	1	-	-	-	84	83	-	-	-	-	-	-
S Dak	1	-	-	-	166	187	1	\cdots	-	-	-	-
Nebr	4	1	3	-	525	656	2	3	-	-	-	-
Kans	14	-	1	-	1,198	1.624	7	-	-	-	1	-
S ATLANTIC	730	18	28	4	53,788	53,075	36	108	12	1	1	4
Del	9	-	1	-	759	842	2	-	-	-	-	-
Md	110	-	1	-	6.434	6.210	5	23	3	-	-	2
D C	108	-	-	-	3,593	3,833	-	-	-	-	-	-
Va	55	3	11	1	4,270	4,433	6	14	4	-	-	-
W Va	3	-	5	-	401	625	1	3	-	-	-	-
NC	33	4	8	-	7,973	8,844	3	14	1	-	-	-
S C	16	-	-	-	4.814	4,680	-	15	-	-	1	1
Ga	128	3	-	-	9,083	9,359	3	12	-	1	-	-
Fla	268	8	2	3	16,461	14,249	16	27	4	-	-	1
ES CENTRAL	23	5	11	2	14,868	17,136	2	24	2	-	1	-
$K y$	14	3	4	1	1,553	2,053	-	5	-	-	1	-
Tenn			3	-	5,149	6,826	1	10	1	-	1	-
Ala	3	2	4	-	4.834	4.595	1	9	1	-	-	-
Miss	6	-	-	1	3,332	3,662	-	-	-	-	-	-
W S CENTRAL	465	5	19	1	22,325	25,101	34	36	3	4	-	4
Ark	12	-	3	1	2,228	2,301	7	3	2	-	-	-
La	74	2	3	-	4,614	4,159	-	9	2	-	-	-
Okla	22	2	8	-	2,461	2,927	5	7	-	-	-	-
Tex	357	3	8	-	13,022	15,714	22	17	1	4	\cdot	4
MOUNTAIN	116	6	7	-	5,405	6,264	89	38	9	3	1	-
Mont	1	-	-	-	135	166	-	-	1	-	-	.
Idaho	2	-	-	-	185	215	6	7	-	1	-	-
Wyo	2	-	-	-	75	138	1	-	1	-	-	-
Colo	56	1	1	-	1,094	1.711	25	-	3	1	-	-
N Mex	12	,	1	-	589	665	5	-	-	-	-	.
Ariz	16	4	5	-	1,989	1,980	43	26	4	1	1	-
Utah	8	1		-	205	273	7	3	-	-	.	-
Nev	19	-	-	-	1,133	1,116	2	2	-	-	-	-
PACIFIC	1,357	30	31	1	30,669	29.341	281	130	19	13	1	41
Wash	52	4	5	-	2,057	2,369	97	35	10	3	1	2
Oreg	20	-	-	1	1.107	1.130	24	17	2	1	-	-
Calif	1,257	19	26	1	26,689	24.696	157	75	7	9	-	36
Alaska	3	7	-	-	534	831	3			-	-	3
Hawalt	25	7	-	-	282	315	-	3	-	-	-	3
	16	1	-	i	53	13	1	-	-	1	-	-
PR	16	1	-	1	566	543	-	.	-	1	.	-
VI	-	-	-	-	61 120	57	1	-	-	.	-	-
Pac Trust Terr	-	-	-	-	120	18	1	1	-	-	-	17
Amer Samoa	-	-	-	-	27	8	-	1	-	-	-	1

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending
April 4, 1987 and March 29, 1986 (13th Week)

Reporting Area	Malaria	Measles (Rubeola)					Meningococcal Infections	Mumps		Pertussis			Rubella		
		Indigenous		Imported *		$\begin{gathered} \text { Total } \\ \hline \text { Cum } \\ 1986 \end{gathered}$									
	$\begin{aligned} & \text { Cum. } \\ & 1987 \end{aligned}$	1987	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	1987	$\begin{aligned} & \text { Cum. } \\ & 1987 \end{aligned}$		$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	1987	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	1987	$\begin{aligned} & \text { Cum. } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	1987	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	$\begin{gathered} \text { Cum } \\ 1986 \end{gathered}$
UNITED STATES	166	58	581	7	97	1.476	947	316	4,412	23	456	554	7	73	118
NEW ENGLAND Maine	13	2	3	-	7	9	87	-	11	-	11	32	-	-	1
N.H.		2	2	-	-		5	-		-		2	-		-
Vt .	-	2	1	-	5		8	-	6	-	1	12	-	-	1
Mass	7	-	1	-	5 2	9	6 47	-	2	-	3	1	-	-	-
R.I.	4	-	-	-	2	9	47	-	1	-	3	9	-	-	-
Conn	2	-	-	-	-	-	14	-	2	-	4	1	-	-	-
MID ATLANTIC	8	37	105	1	33	470	60	2							
Upstate N.Y	3	37	8	t	8	$\begin{array}{r}3 \\ \hline\end{array}$	38	1	22	6	45	47	-	3 1	23 15
N.Y City N.J	2	37	94	$1{ }^{\dagger}$	8	53	6				4	3	-	1	5
$\mathrm{N} . \mathrm{J}$ Pa	1 2	U	3	U	2	414	16	1	22	-	4	5	-	1	3
Pa	2	U	-	U	15	-	16	U	18	U	11	18	U	-	.
EN CENTRAL	4	2	56	6	10	278	123	112							
Ohio	3	.	5	.	4	278	123 43	112	2,649 32	2	57 19	138	3	15	5
Ind III.	1	-	33	${ }^{-}+$	-	-	14	5	308	-	1	14	-	-	-
Mich	1	2	33 23	6^{+}	6	152	21	95	1,465	-	3	19	3	14	2
Wis	-	-	23	-	-	122	39	12	380	2	18	12		1	2
	-	-	-		-	122	6	-	464	-	17	35	-	.	1
WN CENTRAL	4	5	8	-	1	65		113	434	2	27				
Minn	3	-	.	-	-	6	14	85	434 259	2	27 3	31 15	-	-	4
lowa	1	5	i	-	i	-	3	23	134	-	3	15 4	-	-	-
Mo	1	5	8	-	1	-	13	-	6	1	11	3	-	-	1
N Dak S Dak	-	-	-	-	-	-	1	-	-	-	1	2	-	-	1
Nebr	-	-	-	-	-	-	1	1	13	1	2	-	-	-	-
Kans	-	-	-	-	-	65	1 15	1	1	-	-	1	-	-	-
		-		-	-	65	15	3	21	-	7	6	-	-	3
S ATLANTIC	27	6	22	-	-	191		7	47						
Del	1	-	.	-	-	191	168 4	7	47	3	113	138 38	1	7	1
Md	6	-	-	-	-	5	14	1	8	-	-	38 27	-	1	-
D.C	3	-	-	-	-	5	3	1	8	-	-	27	-	1	-
Va	5	-	-	-	-	-	30	1	4	1	30		1	1	-
W Va		-	.	-	-	-	30	1	4	1	30 23	9	1	1	-
NC	3	-	-	-	-	-	21	-	12	2	23	1 12	-	-	-
S.	1	-	-	-	.	173	16	1	2 3	2	47	12	-	-	-
Ga	2	-	-	-	-	1 1	32	1.	3 1	-	10	37	-	-	-
Fla	6	6	22	-	-	12	48	4	17	-	10 3	37 12	-	5	1
E.S CENTRAL	1	-	-	-	-	-	55	60	654	-	6	14			
Ky	-	-	-	-	-	-	9	6	110	-	1	14	-	2	1
Tenn	-	-	-	-	-	-	20	58	535	-	1	4	-	2	1
Ala	-	-	-	-	-	-	22	2	- 9	-	3	4 9	-	-	-
Miss	1	-	-	-	-	-	4	2	9	-	2	9	-	-	-
W S CENTRAL	9	-	5	-	1	293									
Ark	1	-	.	-	.	265	+ 4	1	199	-	34	21 1	-	-	23
Okla	3	-	-	-	-	-	9	5	66	-	5	3	-	-	-
Tex	3 5	-	5	-	1	2	11	N	N	-	27	17	.	-	-
Tex	5	-	5	-	-	26	45	3	83	-	2	17	-	-	23
MOUNTAIN	5	2	90	-	11	41	31	8	93						
Mont	-	2	O	-	1	4	31	8	93	3	39	65	2	5	-
daho	1	-	-	-	.	.	2	1	2	-	11	15	-	-	-
Wyo	-	-	-	-	-	-	2	1	2	-	11	15	-	1	-
Colo	1	-	-	-	-	2	10	-	8	3	15	14	-	1	-
N Mex	-	1	89	-	9	13	3	N	N	3	1	14 8	-	-	-
Ariz	1	1	1	-	1	25	14	6	77	-	8	8 20	-	-	-
Utah	-	-	1	.	,	25	14	1	5	-	8	20	2	4	-
Nev	2	-	-	-	-	-	2	1.	5 1	-	1	8	2	4	-
PACIFIC	95	4	292	-											
Wash	5	4	292	-	34	129		5	114	7	109	48	1	41	60
Oreg	1	-	1	-	26	28 2	43 14	N	18	3	20	23	-	-	0
Calif	87	4	291	-	6	8	14	N	${ }^{\text {N }}$	1	12	2	-	1	-
Alaska	2	4	291	-	6	83	245	4	85	1	49	21	1	38	60
Hawail	2	-	-	-	2	10^{-}	2	-	3	-	2	1	1	3	6
		-	-	-	2	16	2	1	8	3	26	1	.	2	-
Guam	-	1													
R	-	103	242	\square	-	1	2	-	4	-	-	-	-	-	2
1			242	-	-	4	1	-	1	1	9	2	-	1	2
Pac Trust Terr	-	-	-	-	-	-	-	-	3	-	-	.	-	1	.
Amer Samoa	-	-	-	-	.	-	-	-	2	-	-	.	-	-	-
				-	-	-	-	1	1	-	-	-	.	-	-

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending
April 4, 1987 and March 29, 1986 (13th Week)

Reporting Area	Syphilis (Civilian) (Primary \& Secondary)		Toxicshock Syndrome	Tuberculosis		Tularemia	Typhoid Fever	Typhus Fever (Tick-borne) (RMSF)	Rabies. Antmal
	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	1987	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1987 \end{aligned}$
UNITED STATES	8,283	6,454	8	4,667	4,617	17	55	$10+1$	1,017
NEW ENGLAND	122	131	-	105	149	-	3	-	-
Maine	1	8	-	10	14	-	-	-	-
NH	1	6	-	5	8	-	-	-	-
V t	1	5	-	3	7	-	-	-	-
Mass	69	67	-	30	74	-	3	-	-
RI	2	8	-	15	5	-	-	-	-
Conn	48	37	-	42	41	-	-	-	-
MID ATLANTIC	1,420	883	-	877	903	-	5	-	94
Upstate N Y	. 54	40	-	149	139	-	2	-	9
NY City	1.005	495	-	435	435	-	3	-	1
NJ	164	180	-	142	161	-	3	-	1
Pa	197	168	U	151	168	-	-	-	84
EN CENTRAL	151	246	2	567	600	1	8	-	24
Ohio	29	31	1	110	87	1	3	-	-
Ind	15	27	-	50	75	-	1	-	3
III	52	132	-	236	271	-	1	-	12
Mich	42	42	1	156	133	-	2	-	-
Wis	13	14	-	15	34	-	1	-	9
W N CENTRAL	36	65	2	132	122	5	3	-	216
Minn	4	8	-	33	25	-	1	-	50
lowa	6	5	-	8	11	2	-	-	65
Mo	19	37	-	66	66	3	2	-	12
N Dak	-	2	-	1	2	-	-	-	23
S Dak	3	-	-	5	2	-	-	-	47
Nebr	3	8	-	11	4	-	-	-	6
Kans	1	5	2	8	12	-	-	-	13
S ATLANTIC	2,792	1,933	1	944	913	2	5	2	271
Del	23	10	-	11	11	1	-	-	
Md	161	117	-	86	62	-	-	-	65
DC	89	93	-	29	38	-	-	-	17
Va	67	127	-	89	81	1	-	-	104
W Va	4	3	-	30	35	-	1	-	15
NC	165	146	-	92	119	-	1	-	-
SC	189	177	1	97	124	-	-	2	7
Ga	422	383	-	124	107	-	-	-	51
Fla	1.672	877	-	386	336	-	3	-	12
E S CENTRAL	503	448	-	418	418	2	1	3	93
K_{y}	3	25	-	108	110	1	,	-	47
Tenn	243	181	-	113	120	-	1	2	30
Ala	143	146	-	138	138	-	-	-	16
Miss	114	96	-	59	50	1	-	1	-
W S CENTRAL	1.121	1.357	-	491	569	6	3	$4+$	141
Ark	53	72	-	43	59	1	-	-	41
La	183	206	-	80	125	-	-	4	3
Okla	41	45	-	56	46	5	1	41	3 9
Tex	844	1,034	-	312	339		2	-	94
MOUNTAIN	207	177	2	122	90	1	1	-	75
Mont	7	2	-	8	5	-	-	-	43
Idaho	1	1	-	13	4	-	-	-	-
Wyo	22	-	-		-	-	-	-	21
Colo	25	53	-	-	4	-	-	-	-
N Mex	15	22	-	24	23	1	1	-	11
Ariz	97	76	-	68	40	1	-	-	11
Utah	2	3	2	1	4		-	-	-
Nev	38	20	-	8	10	-	-	-	-
PACIFIC	1,931	1,214	1	1,011	853	-	26	1	103
Wash	12	, 27	1	48	49	-	26	-	-
Oreg	55	26	.	22	34	.	25	-	102
Calif Alaska	1.859	1,148	-	871	715	-	25	1	102
Alaska	2		-	18	12	-	-	-	1
Hawan	3	13	-	52	43	-	1	-	-
Guam	1	1	-	4	-	-	-	-	-
PR	246	206	-	56	71	-	-	-	15
VI	3		-	1	-	-	-	-	-
Pac Trust Terr	75	8	-	33	5	-	8	-	.
Amer Samoa	2		-	3		-		-	-

TABLE IV. Deaths in 121 U.S. cities.* week ending April 4, 1987 (13th Week)

Reporting Area	All Causes, By Age (Years)						$\begin{aligned} & \text { P\&100 } \\ & \text { Total } \end{aligned}$	Reporting Area	All Causes, By Age (Years)						$\begin{aligned} & \text { P\& } 1^{-0} \\ & \text { Total } \end{aligned}$
	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	$\geqslant 65$	45-64	25.44	1-24	<1			$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	$\geqslant 65$	45-64	25-44	1-24	<1	
NEW ENGLAND Boston. Mass	671	478	124	33	18	18	52	S. ATLANTIC	1,902	1,158	415	182	55	90	113
	188	108	46	15	9	10	23	Atlanta, Ga.	1.96	107	41	24	55	24	113 9
Bridgeport, Conn. Cambridge, Mass	40	32	5	1	1	1	4	Baltimore, Md	463	290	105	38	12	18	29
	22	15	7	-	-	-	-	Charlotte, N. C.	59	32	18	3	2	4	6
Fall River. Mass.	37	32	2	2	3	-	-	Jacksonville. Fla	122	81	24	10	2	5	14
Hartford, Conn.	51	39	5	4	3	-	3	Miami, Fla.	155	90	32	25	5	3	
Lowell, Mass.	28	20	5	2	1	-	2	Norfolk, Va.	50	29	14	1	4	2	6
Lynn, Mass.	- 24	21	3	-	-	-	-	Richmond, Va	96	66	24	1	4	2	7
New Bedford, Mass	s 21	17	2	2	-	-	-	Savannah, Ga.	70	48	19	2	4	1	11
New Haven, Conn.	37	28	5	1	1	2	3	St Petersburg. Fla.	90	78	6	4	-	2	5
Somerville, Mass.	59	42	12	1	-	4	2	Tampa, Fla	61	37	12	4	4	2	6
Springfield, Mass.	11 49	9 37	2	2	1	-	3 5	Washington, D.C	514	282	117	71	17	27	18
Waterbury, Conn.	39	28	9	2		-	2	Wilmington, Del.	26	18	3	-	5		2
Worcester, Mass.	65	50	12	1	1	1	5	ES. CENTRAL	817	516	205	37	24	35	49
								Birmingham. Ala	146	88	37	8	4	9	5
MID ATLANTIC Albany NY N,	2,692	1,739	548	247	76	81	168	Chattanooga. Tenn.	55	42	11	2	-	-	3
Albany. N.Y Allentown, Pa	52	36	9	5	1	1	2	Knoxville, Tenn	55	41	12	-	1	1	1
	14	13	1		-	-	2	Louisville, Ky	118	70	32	7	3	6	7
Buffalo. N.Y.	115	81	21	10	1	2	7	Memphis, Tenn	203	128	52	10	7	6	24
Elizabeth, N.J.	34	21	6	4	3	3	2	Mobile, Ala	4	62	18	4	6	4	5
Erie, Pa.t	37	31	4	-	2	-	3	Nashville. Tenn	111	60	36	6	2	2	4
Jersey City, N.J.	46	25	8	9	1	3	2	Nashvile. Tenn		6	36	6	2	7	4
	1,361	843	298	151	36	33	87	W.S CENTRAL	1,346	852	273	127	45	49	51
Newark, N.J	68	33	14	8	2	10	3	Austin. Tex	1,35	30	14	8	2	1	3
Paterson, N.J	29	20	3	3	3	-	2	Baton Rouge. La	36	23	6	5	-	2	2
Pittsburgh. Pa.t	441	281 39	87	39	19	15	28	Corpus Christi. Tex	71	42	16	5	5	3	4
Reading. Pa	60	39	18	1	1	1	3	Dallas, Tex	213	124	46	23	11	9	5
Rochester, N.Y.	43 121	88	24	6	4	2	10	Fort Worth. Tex	57	38	13	2	3	4	2
Schenectady, N.Y	30	25	4	1	4	2	10	Hort Worth, Tex	93 308	64 176	15	10	3	11	6
Scranton, Pa.t	26	18	7	1	-	-	2	Little Rock. Ark	70	179	11	34	13 3	11	4
Syracuse, N.Y	97	61	21	4	2	9	6	New Orleans, La	128	84	25	12	2	5	1
Trenton. N.J	32	25	4	-	1	2	-	San Antonio. Tex	174	117	26	19	5	7	6
Utica, NY	23	18	5		.		3	Shreveport. La	52	41	8	3	-	.	1
Yonkers, N.Y	33	29	2	2	-	-	2	Tulsa. Okla.	89	64	19	1	1	4	10
EN. CENTRAL	2,300	1,568	454	150	58	70	93	MOUNTAIN	741	499	133	42	27	37	25
Akron. Ohio	65	48	9	2	1	5	93	Albuquerque. N Mex	110	67	29	8	3	3	3
Canton, Ohio	46	29	7	6	2	2	6	Colo Springs. Colo	42	24	9	3	3	3	6
Chicago, Ill.§	564	362	125	45	10	22	16	Denver. Colo	102	59	22	8	3	10	5
Cincinnati. Ohio	133	92	25	9	4	3	13	Las Vegas. Nev	112	76	21	8	1	3	4
Cleveland, Ohio	169	118	28	14	3	6	1	Ogden, Utah	26	20	2	8	1	3	1
Columbus, Ohio	130	83	28	9	3	7	6	Phoenix. Ariz	172	119	28	8	12	5	2
Dayton. Ohio	126	90	29	4	2	1	-	Pueblo. Colo	31	22	6	1		2	1
Detroit. Mich.	256	169	42	28	12	5	6	Salt Lake City. Utah	42	28	5	1	2	6	-
Evansville, Ind	44	37	7		.		3	Tucson, Ariz	104	84	11	5	2	2	3
Fort Wayne. Ind.	53	36	11	4		2	3								
Gary, Ind. §	21	15	4	1	1		3	PACIFIC	2,078	1.391	408	161	69	45	162
Grand Rapids, Mich Indianapolis. Ind.	h 61	42	7	2	6	4	7	Berkeley. Cahf	16	13	1		1	1	1
	173	110	47	10	3	3	3	Fresno, Calif	76	57	13	1	4	1	10
Madison. Wis Milwaukee, Wis	39 124	28	8	1	1	1	2	Glendale. Calif	27	20	4	-	1	2	4
	124	93	25	3	2	1	3	Honolulu. Hawaii	68	34	14	12	5	3	9
Peoria. III	49	36	9	1	1	2	7	Long Beach. Calif	138	100	22	7	3	6	22
Rockford. III.	41	25	10	2	3	1	6	Los Angeles, Calif	605	384	133	52	28	4	24
	29	26	2	1	-		2	Oakland. Calif	74	52	12	6	1	3	10
Toledo. Ohio Youngstown. Ohio	107	78	17	7	1	4	8	Pasadena, Calif	27	15	6	1	-	5	3
	70	51	14	1	3	1	1	Portland. Oreg	142	99	27	12	2	2	4
W N CENTRAL								Sacramento, Calif	153	101	37	9	5	1	15
	740	517	129	45	17	32	40	San Diego, Calif.	148	100	23	15	4	6	15
Des Moines, lowa	63	46	10	5		2	3	San Francisco. Calif	174	108	35	25	3	3	+
Duluth, Minn	21	16	5	-	-		1	San Jose, Calif	171	114	35	11	6	5	18
Kansas City, Kans	39	25	7	4	2	1	1	Seattle, Wash.	156	113	28	8	4	3	5
Kansas City, Mo	97 37	64	17	4	5	7	3	Spokane, Wash	50	37	10	1	2		7
Lincoln, Nebr	37	28	6	2	1	-	3	Tacoma, Wash	53	44	8	1	-	.	6
Minneapolis, Minn Omaha, Nebr	190	139	29	11	1	10	10						389	457	753
Omaha, Nebr	61 116	41 71	15 26	2	1	2	1	TOTAL	13,287	8.718	2,689	1,024	389	457	753
St Paul, Minn	48	34	7	4	1	2	4								
Wichita, Kans	68	53	7	5	1	2	5								

[^2]considered sedentary. Rates increased with age and were slightly higher for women than for men. The National Health Interview Survey (3), a representative survey conducted by the Na tional Center for Health Statistics using household-interviews, provided very similar estimates of the prevalence of sedentary lifestyle for 1985. The trends for age, gender, and region have been noted previously in other national surveys (4).

The 1990 physical fitness and exercise objectives are also concerned with the regular monitoring of national trends, the use of community recreation programs and facilities, public and professional awareness of the benefits of regular physical activity, worksite fitness programs, and the evaluation of the short- and long-term effects of physical activity (5). Recent reports have summarized progress in these areas $(5,6)$.

Specific health reasons for promoting physical activity stem from a wide variety of research findings. Increased levels of physical activity have been associated with reduced risk of coronary heart disease (7), enhanced weight control (8), reduced symptoms of anxiety and mild to moderate depression, and an enhanced sense of well-being derived from feeling and looking better (9). Further, there is emerging evidence that physical activity may have important beneficial effects on non-insulin-dependent diabetes mellitus, hypertension, and osteoporosis (6). In addition, physical activity is helpful in managing and treating many chronic diseases (10).

In spite of the fact that physical activity is a complex behavior (11) and difficult to assess (12), progress has been made in the ability to characterize national levels of physical activity. Unfortunately, these results indicate that less than half of the American population is physically active at a level likely to confer health benefits. Because of the multiple health benefits of physical activity and because of the high prevalence of sedentary lifestyle documented among the U.S. population, the promotion of prudent physical activity should be a national priority for the Public Health Service.

References

1. Public Health Service. Promoting health/preventing disease: objectives for the nation. Washington, DC: US Department of Health and Human Services, 1980.
2. Haskell WL, Montoye HJ, Orenstein D. Physical activity and exercise to achieve health-related physical fitness components. Public Health Rep 1985;100:202-12.
3. Caspersen CJ, Christenson GM, Pollard RA. Status of the 1990 physical fitness and exercise objectives - evidence from NHIS 1985. Public Health Rep 1986;101:587-92.
4. Stephens T, Jacobs DR Jr, White CC. A descriptive epidemiology of leisure-time physical activity. Public Health Rep 1985;100:147-58.
FIGURE 3. Box-plot summaries of the region-specific distribution of sedentary lifestyle prevalences from 22 states participating in the 1985 Behavioral Risk Factor Surveillance System

5. Iverson DC, Fielding JE, Crow RS, Christenson GM. The promotion of physical activity in the United States population: the status of programs in medical, worksite, community, and school settings. Public Health Rep 1985;100:212-24.
6. Siscovick DS, LaPorte RE, Newman JM. The disease-specific benefits and risks of physical activity and exercise. Public Health Rep 1985;100:180-8.
7. Powell KE, Thompson PD, Caspersen CJ, Kendrick JS. Physical activity and the incidence of coronary heart disease. Ann Rev Public Health (in press).
8. Blair SN, Jacobs DR Jr, Powell KE. Relationships between exercise or physical activity and other health behaviors. Public Health Rep 1985;100:172-80.
9. Taylor CB, Sallis JF, Needle R. The relation of physical activity and exercise to mental health. Public Health Rep 1985;100:195-202.
10. Kottke TE, Caspersen CJ, Hill CS. Exercise in the management and rehabilitation of selected chronic diseases. Prev Med 1984;13:47-65.
11. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 1985;100:126-31.
12. LaPorte RE, Montoye HJ, Caspersen CJ. Assessment of physical activity in epidemiologic research: problems and prospects. Public Health Rep 1985;100:131-46.

Epidemiologic Notes and Reports

Update: Salmonella enteritidis Infections in the Northeastern United States

New England and the Middle Atlantic region* experienced a fivefold increase in the reported isolation rate of Salmonella enteritidis between 1976 and 1985 (1). Consequently, a regional S. enteritidis Working Group was established in 1986 to coordinate investigations of S. enteritidis outbreaks. Investigations of recent outbreaks and related studies suggest that many S. enteritidis infections in the Northeast are associated with eggs.

Fourteen S. enteritidis outbreaks have been reported to CDC from the Northeast since October 1, 1986. The vehicles of transmission have been identified for 10 of the outbreaks. At least six of these vehicles were either eggs or foods which contained raw or undercooked eggs (homemade eggnog prepared with store-bought eggs, Monte Cristo sandwiches made of sliced cooked meat and cheese on bread dipped in raw egg and grilled, and Caesar salad dressing made with raw eggs). The outbreak-associated eggs were all USDA grade A shell eggs, and, in each instance, the food preparation history suggested the eggs were eaten raw or undercooked. The outbreak-associated eggs were not available for culture. However, in an outbreak associated with riceballs (made with eggs) in September 1986, S. enteritidis was cultured from an egg-breaking machine in the restaurant involved.
Reported by: S Schultz, MD, New York City Dept of Health; D Morse, MD, State Epidemiologist, New York Dept of Health. W Parkin, MD, State Epidemiologist, New Jersey Dept of Public Health. GF Grady, MD, State Epidemiologist, Massachusetts Dept of Public Health. EJ Witte, VMD, MPH, State Epidemiologist, Pennsy/vania Dept of Health. JL Hadler, MD, MPH, Connecticut Dept of Health Svcs. RL Vogt, MD, State Epidemiologist, Vermont Dept of Health. E Schwartz, MD, State Epidemiologist, New Hampshire Dept of Health and Welfare. KF Gensheimer, MD, State Epidemiologist, Maine Dept of Human Svcs. PR Silverman, PhD, State Epidemiologist, Delaware Dept of Health and Social Svcs. E Israel, MD, State Epidemiologist, Maryland Dept of Health and Mental Hygiene. Div of Field Services, Epidemiology Program Office, Enteric Diseases Br, Div of Bacterial Diseases, Center for Infectious Diseases, CDC.

[^3]Salmonella - Continued
Editorial Note: Salmonellosis associated with eggs is not a new problem. Large outbreaks of salmonellosis associated with bulk egg products and cracked shell eggs $(2,3)$ led to the passage of the Egg Products Inspection Act in 1970. This law required pasteurization of all bulk egg products and federally-supervised inspection of shell eggs for "checks" or cracks. Since enactment of this legislation, there have been fewer egg-associated outbreaks of salmonellosis, and CDC has not received any reports of outbreaks associated with bulk egg products (4).

These recent outbreaks suggest that egg-associated S. enteritidis is an emerging public health problem and show the importance of routine serotype-specific surveillance. Eggs can become contaminated with Salmonella in several ways. Fecal soiling may contaminate egg shells, and the internal contents of the egg may occasionally be contaminated by organisms entering through hairline cracks in the shell (5). In addition, if there is an ovarian infection in the hen, an egg yolk may become infected by certain serotypes of Salmonella before the shell is formed (6). It is not known whether S. enteritidis is one such serotype.

As is true for meat, poultry, raw milk, and other raw foods of animal origin, proper handling and cooking of eggs can minimize the risk of salmonellosis. Thorough cooking kills Salmonella. Consumers concerned about the proper handling of egg-containing foods should contact their county extension home economist or call the USDA Meat and Poultry Hotline (800-535-4555). Further research is needed to understand the ecology of Salmonella colonization in poultry and other food-animal species and to determine ways to further reduce the contamination of eggs and other foods derived from animals.

Clinicians are encouraged to report cases of salmonellosis to their state health department. Isolates of Salmonella can be submitted to state laboratories for serotyping to support epidemiologic investigations.
References

1. CDC. Increasing rate of Salmonella enteritidis infections in the Northeastern United States. MMWR 1987;36:10-1.
2. Sanders E, Sweeney FJ Jr, Friedman EA, Boring JR, Randall EL, Polk LD. An outbreak of hospitalassociated infections due to Salmonella derby. JAMA 1963;186:984-6.
3. CDC. Proceedings: national conference on salmonellosis, March 11-13, 1964. Atlanta, Georgia: US Department of Health, Education and Welfare, Public Health Service, 1965; DHEW publication no. (PHS) 1262.
4. Cohen ML, Blake PA. Trends in foodborne salmonellosis outbreaks: 1963-1975. J Food Protection 1977;40:798-800.
5. Board RG. The course of microbial infection of the hen's egg. J Appl Bact 1966;29:319-41.
6. Snoeyenbos GH. Pullorum disease. In: Hofstad MS, Calnek BW, Helmboldt CF, Reid WM, Yoder HW Jr, eds. Diseases of poultry. 7th ed. Ames, lowa: Iowa State University Press, 1978:80-100.

Progress in Chronic Disease Prevention

The Prevalence of Cancer - Connecticut, January 1, 1982

Incidence and follow-up data from the Connecticut Tumor Registry were analyzed in order to estimate the prevalence of cancer (1). A case was included in this analysis if the patient was alive on January 1, 1982, and had been diagnosed with cancer at any time during the study period, 1935 through 1981. Cases of basal- and squamous-cell cancer of the skin were not included. During the study period, 288,221 residents of Connecticut were diagnosed with invasive cancer. Of these, 53,628 (18.6%) were known to be living on January 1, 1982; $19,881(6.9 \%)$ were lost to follow-up (i.e., reported alive with a date of last contact prior to January 1, 1982). The life-table method was used to estimate the number of patients among those lost to follow-up who were alive on January 1, 1982 (2).

On January 1, 1982, the age-adjusted* prevalence rate among males for all sites of cancer combined was $1,789 / 100,000$ compared with $2,222 / 100,000$ among females. In contrast, the age-adjusted cancer incidence rate for all sites among males diagnosed during the period 1978-1981 was almost one-third higher than among females (463/100,000 compared with $342 / 100,000$). The mortality rate among males was about 50% higher than among females ($246 / 100,000$ compared with $154 / 100,000$) (3). The relatively favorable survival rate for women with cancer affecting many of the common sites (e.g., breast and gynecological malignancies) and the poor survival rate for patients with lung cancer (the most common cancer in males) resulted in an age-adjusted prevalence rate among females that was about 25% higher than that among males.

The five most prevalent malignant diseases among males were prostate cancer (372/100,000), colon cancer (249/100,000), bladder cancer (233/100,000), rectal cancer (145/100,000), and lung cancer ($135 / 100,000$). The most prevalent cancer site in females was the breast $(848 / 100,000)$, followed by corpus uteri $(273 / 100,000)$, colon (224/100,000), cervix ($138 / 100,000$), and rectum $(98 / 100,000)$.

The age-specific prevalence rates for all sites of cancer combined among females 20 to 59 years of age were about twice the rates for males (Figure 4). The rates for all sites combined for males >70 years of age were higher than those for females, partly because of the high prevalence of prostate cancer in elderly males. For females, prevalence rates for all sites combined ranged from 1,170/100,000 for those 30 to 49 years of age to 10,635/100,000 for those >70. For males, the rates for all sites combined increased from 598/100,000 for those 30 to 49 years old to $11,810 / 100,000$ for those >70.

Editorial Note: The magnitude of the cancer problem has been measured traditionally by incidence and mortality statistics. The knowledge of cancer prevalence rates adds a new dimen-
*Adjusted to the 1980 U.S. population, U.S. Bureau of the Census.
FIGURE 4. Age-specific prevalence rates of cancer for all sites combined among males and females - Connecticut, January 1, 1982

Cancer - Continued

sion to the assessment of this problem. While incidence reflects only the rate of occurrence of newly diagnosed cancer cases in one particular year, prevalence estimates include patients diagnosed during previous years who survived to the point in time of interest. Because most patients with cancer survive more than one year, prevalence is a useful indicator of the cancer burden on the health care system.
"Cured" and "uncured" cases were included in this study because, in many cases, the determination of cure is ambiguous. It has been suggested that even for so-called cancer survivors, the experience of cancer leaves a long-lasting impression (4). Problems of employment, insurance, second malignancies, and reproduction linger long after the patient's treatment is completed and probably justify including all patients with a history of cancer in the prevalence calculations.

Approximately 2% of the population of the state of Connecticut had a history of cancer on January 1, 1982. Perhaps even more surprising is the fact that 11% of females and 12% of males $\geqslant 70$ years of age had a history of cancer. Applying the age-specific prevalence rates to the estimated 1986 U.S. population (5) results in an estimate of approximately 5 million persons with a history of cancer in the United States. With the anticipated aging of the U.S. population, the number of individuals with a history of cancer can be expected to increase. Calculations using projected populations (5) and assuming constant prevalence rates yield prevalence estimates of 6.2 million for the year 2000 and 9.6 million for 2030 . These projections should be viewed cautiously since the racial and ethnic composition of Connecticut is different from that of the United States as a whole and since incidence and survival patterns among blacks, whites, and other races are known to differ.

Advances in cancer treatment that improve patient survival will almost certainly increase the prevalence rates of cancer over time. With more and more patients living with a history of cancer, an increase in resources will be required to help patients with their medical problems, physical limitations, and social adjustments. However, the successful application of cancer prevention strategies, including smoking cessation and diet modification programs, should decrease the incidence of cancer and thereby lower cancer prevalence.

Reported by: AR Feldman, MD, L Kessler, ScD, MH Myers, PhD, MD Naughton, Surveillance and Operations Research Br and Biometry Br, Div of Cancer Prevention and Control, National Cancer Institute.

References

1. Feldman AR, Kessler L, Myers MH, Naughton MD. The prevalence of cancer: estimates based on the Connecticut Tumor Registry. N Engl J Med 1986;315:1394-7.
2. Cutler SJ, Ederer F. Maximum utilization of the life table method in analyzing survival. J Chron Dis 1958;8:699-712.
3. National Cancer Institute. SEER program: cancer incidence and mortality in the United States, 1973-1981. Bethesda, Maryland: US Department of Health and Human Services, Public Health Service, National Institutes of Health, 1984; DHHS publication no. (NIH)85-1837.
4. Mullan F. Seasons of survival: reflections of a physician with cancer. New Engl J Med 1985; 313:270-3.
5. Bureau of the Census. Projections of the population of the United States, by age, sex, and race: 1983 to 2080. Washington, DC: US Department of Commerce, 1984; (current population reports; series P-25; no. 952).

FIGURE I. Reported measles cases - United States, weeks 09-12, 1987

The Morbidity and Mortality Week/y Report is prepared by the Centers for Disease Control, Atlanta, Georgia, and available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office. Washington, D.C. 20402, (202) 783-3238.

The data in this report are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Such reports and any other matters pertaining to editorial or other textual considerations should be addressed to: ATTN: Editor, Morbidity and Mortality Weekly Report, Centers for Disease Control. Atlanta, Georgia 30333.

Director, Centers for Disease Control
James O. Mason, M.D., Dr.P.H.
Director, Epidemiology Program Office
Carl W. Tyler, Jr., M.D.
aU.S. Government Printing Office:1987-730-145/40054 Region IV

DEPARTMENT OF

HEALTH \& HUMAN SERVICES

Public Health Service
Centers for Disease Control
Atlanta GA 30333

Official Business

Penalty for Private Use $\$ 300$

Postage and Fees Paid U.S. Dept. of H.H.S. HHS 396

[^0]: -Confidence interval.

[^1]: -Seven of the 65 reported cases for this week were imported from a foreign country or can be directly traceable to a known internationally

[^2]: - Mortality data in this table are voluntarily reported from 121 cities in the United States. most of which have populations of 100.000 or more.A death is reported by the place of its occurrence and by the week that the death certificate was filed Fetal deaths are not included
 -. Pneumonia and influenza
 + Because of changes in reporting methods in these 3 Pennsylvania cities. these numbers are partial counts for the current week Complete counts will be available in 4 to 6 weeks
 $\dagger \dagger$ Total includes unknown ages
 § Data not available Figures are estimates based on average of past 4 weeks

[^3]: *Defined by the U.S. Bureau of the Census as New Jersey, New York, and Pennsylvania.

